Magnitude and Topological Entropy of Digraphs
نویسندگان
چکیده
Magnitude and (co)weightings are quite general constructions in enriched categories, yet they have been developed almost exclusively the context of Lawvere metric spaces. We construct a meaningful notion magnitude for flow graphs based on observation that topological entropy provides suitable map into max-plus semiring, we outline its utility. Subsequently, identify separate point contact between digraphs yields an analogue volume geodesic flows. Finally, sketch utility this construction feature engineering downstream applications with generic digraphs.
منابع مشابه
Entropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملTHE RELATION BETWEEN TOPOLOGICAL ORDERING AND ADJACENCY MATRIX IN DIGRAPHS
In this paper the properties of node-node adjacency matrix in acyclic digraphs are considered. It is shown that topological ordering and node-node adjacency matrix are closely related. In fact, first the one to one correspondence between upper triangularity of node-node adjacency matrix and existence of directed cycles in digraphs is proved and then with this correspondence other properties of ...
متن کاملTopological entropy
1. Definitions and general properties. Let X be a compact topological space. Definition 1. For any open cover 31 of X let N(ñ) denote the number of sets in a subco ver of minimal cardinality. A subco ver of a cover is minimal if no other subcover contains fewer members. Since X is compact and 31 is an open cover, there always exists a finite subcover. To conform with prior work in ergodic theor...
متن کاملentropy operator for continuous dynamical systems of finite topological entropy
in this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. it is shown that it generates the kolmogorov entropy as a special case. if $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملThe topological Rohlin property and topological entropy
For a compact metric space X let G = H(X) denote the group of self homeomorphisms with the topology of uniform convergence. The group G acts on itself by conjugation and we say that X satisfies the topological Rohlin property if this action has dense orbits. We show that the Hilbert cube, the Cantor set and, with a slight modification, also even dimensional spheres, satisfy this property. We al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic proceedings in theoretical computer science
سال: 2023
ISSN: ['2075-2180']
DOI: https://doi.org/10.4204/eptcs.380.15